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Abstract

It has earlier been shown that the use of a self consistent multipole electrostatic model to derive the crystal field parameters (CFP)
actually gives the correct curve shape when the CFP are plotted against the various rare-earth ions (S. Edvardsson, M. Klintenberg, The
use of CI calculated polarizabilities to study rare-earth CFP dependencies in the laser host RE:YLF. Mater. Sci. Forum, 1999;315–
317:407). It is also known that the electrostatic contribution is important for the lower order parameters. In this connection, our primary
interest is to revisit this model and investigate theoretically some aspects of the dipole polarizability (a ). A few approximations wereD

t tdone in the earlier calculations: the treatment of unfilled shells, the neglect that also higher order terms of the type A r C contribute witht0 0
1 1t odd (not only the A r C term), correlation effects and second order contributions in perturbation theory. The solutions of the10 0

¨inhomogeneous Schrodinger equation are solved by a powerful numerical method. The problem is reformulated and results instead in a
simple linear equation system (symmetric tridiagonal matrix) which is stable and fast to solve. The various theoretical results will be used
in future applications.  2000 Elsevier Science S.A. All rights reserved.
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1. Introduction intensity calculations for transitions within the f-shell. A
beautiful review about experimental and theoretical consid-

This work theoretically reviews and also presents some erations may be found in Ref. [1]. This book also lists a
new mathematical expressions in connection to the dipole great number of references in the field of polarizability.
polarizability of ions. First, we apply the full crystal-field
hamiltonian to derive a general expression that should be 1.1. The first order dipole polarizability
useful for polarizabilities in the solid state; the standard
expressions for the free-ion polarizability become a special Since the crystal-field hamiltonian is a one-particle
case (t51). Second, mathematical expressions for both operator we can treat each electron separately. This is true
open- and closed-shell ions are shown. The electronic if all unperturbed wavefunctions are orthogonalized to all
correlations are also known to be fairly important for perturbed wavefunctions. One of the electrons in a rare-
cations. As long as these effects are reasonably small they earth or actinide ion is assumed to be perturbed by the
may be treated using perturbation theory. It is extremely standard crystal field hamiltonian:
convenient to submit the computed perturbed wavefunc-

t ttions into the correlation formula presented. We also briefly H 5O A r C (u, w)cf tp p
tpoutline some expressions needed for second order calcula-

tions. Finally, we conclude this work with a well known where
numerical recipe in order to get fast and reliable solutions.

¢r(r 9)p11 tThe derivations are done using a formalism which should ]] ¢A 5 (21) E C (a9, b9) dr 9tp t11 2p9rbe considered standard for the theoretical rare-earth spec-
troscopist. The type of approach presented here would also represents the external densities. These ligand density
be useful in the calculation of the wavefunctions needed in distributions modify the wavefunction in first order into:
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where c 5 1/ru Y and c 5 1/r o u Y . The in- These two terms in Eq. 2 only contribute if m 5 m9 and0 0 lm 1 l 9m9 l 9 l 9m9

2 if l9 1 l 1 1 is even. These then give the following*duced charge density is then given by c 1 c c 1u u1 0 1

contribution to the polarizability:* ¢ ¢c c and the induced dipole moment m 5 o q r , be-1 0 i i i

comes in integral form:
21 1 / 2

a 5 2 (A ) O[ku uruu l 1 ku uruu l][l9, l]D 10 l 9 0 0 l 9
l 92 (4)¢ * * ¢m 5E(uc u 1 c c 1 c c ) rdV1 0 1 1 0 l9 1 l l9 1 lm3 2 1 S DS Ds dV 0 0 0 2 m 0 m

¢¢in atomic units. The induced dipole moment m 5 a ED From Eq. 4 we have l9 1 l 1 15even, and from the
expressed along the z-axis gives the isotropic scalar dipole angular part of Eq. (3), l9 1 t 1 l5even which gives 2l9 1
polarizability: 2l 1 t 1 1 5 even ⇒ t 5 odd integer. The fact that m 5 m9

gives that p 5 0 (Eq. (3)), so the relevant crystal field
221 * *a 5 2 A E r cos u(uc u 1 c c 1 c c ) dV (1)s dD 10 1 0 1 1 0 perturbations become:

V
t tH 5 O A r Ccf t0 0By the use of spherical harmonics, Eq. (1) is written: t51,3, . . .

]
4p Now consider the well known first order equation from21 ]a 5 2 (A ) OD 10 ¨Rayleigh–Schrodinger perturbation theory:œ 3 l m l m9 9 9 91 1 2 2

(H 2 E )c 5 (E 2 H )c1 0 0 1 1 cf 0
] *E Y u u Y* Y dVF G10 l 9 l 9 l 9m 9 l 9m 91 2 1 1 2 2r

After some rather lengthy derivations we obtain a modified]
4p 1 Sternheimer equation for the dipole polarizability:21 ] ] * *2 (A ) O E Y u (u Y Y10 10 0 l 9 lm l 9m9œ 3 rl 9m9 2

≠ l9(l9 1 1) t] ]]]2 1 1 2 V (r) 2 E (nl) w nl → l9F G s d*1 u Y Y ) dV s d2 2 nl 0l 9 l 9m9 lm ≠r r
]

t4p21 5 r u nl (5)s d0] 9 9 9 95 2 (A ) O ku uruu lkl m uY ul m l10 l 9 l 9 1 1 10 2 21 2œ 3 l m l m9 9 9 91 1 2 2 t twhere u 5 2 2 o A kl9muC ulml w (nl → l9). There arel 9 t t0 0]
4p certainly additional terms that contribute to u in the21 l 9]2 (A ) O [ku uruu lkl9m9uY ulml10 l 9 0 10œ 3 expression c 5 1/r o u Y earlier, but those do notl 9m9 1 l 9m9 l 9 l 9m9

tcontribute to the dipole polarizability. w (nl → l9), from1 ku uruu lklmuY ul9m9l] (2)0 l 9 10 there after designated w , is the perturbed function corre-l 9
t tThe first order wavefunction c may be expanded accord- sponding to the perturbation A r C . Since A is real the1 t0 0 t0

ing to the standard expression: function u in Eq. (4) is real.l 9

Using this definition of u Eq. (4) may then be written:(0) (0) l 9kc uH uc lk cf n(1) (0)]]]]c 5O cn k(0) (0) a 5O a (nlm m → l9m m )E 2 Ek±n D D l s l sn k
l 9

tHere every term consists of an angular part kl9m9uC ulml Ap t0 t t m 1 / 2]5 4 O O ku uruw lkl9muC ulml(21) [l9,l]0 l 9 0which is proportional to: At 10l 9

l9 t l l9 t l l9 1 l l9 1 l
3S DS D(3)S DS D0 0 0 2 m9 p m 0 0 0 2 m 0 m

A2 t0 l9 1 ltThe first term of Eq. (2) (the c part of Eq. (1)) onlyu u1 ]5 4 O O ku uruw l[l9, l]S D0 l 9A 0 0 0t 109 9 9 l 9contributes when l 1 l 1 1 is even. Eq. (3) gives that l1 2 1

9and l are connected to l via t and t , respectively. Now l9 1 l2 1 2 S D
9 9 2 m 0 mfrom Eq. (3) we have that l 1 t 1 l and l 1 t 1 l must1 1 2 2

9 9be even integers, so l 1 l 1 t 1 t is even as well. In the l9 t l l9 t l1 2 1 2 3S DS D (6)
9 9 0 0 0 2 m 0 mcase that t 1 t is even then l 1 l is even; this is1 2 1 2

9 9incompatible with the statement earlier that l 1 l 1 1 is1 2 The interesting feature here is that now the polarizability2even, and hence these terms do not contribute in the uc u1 depend on odd crystal field factors, i.e. they are crystal
part of Eq. (2). For example, this means that a constant dependent. After a diagonalization of the energy matrix,
field does not contribute since there is only one term in the the eigenvectors are given by:1hamiltonian A rC (t 1 t even). However, the remaining10 0 1 2

2 9 9cross-terms in uc u with l 1 l odd could actually be C 5O c k k . . . kh j1 1 2 0 i 1 2 n i
iimportant (e.g. in a crystal) but should still be small in

* *comparison with c c 1 c c . for a open-shell ground state. The probability of finding0 1 1 0
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the ion in the determinantal product state k k . . . k ish j1 2 n i A1 9l t lt0 m 1 / 2 k k2 ] ] 9c . This means that the total a is a weighted sum over dc 5 O O 2 (21) [l , l ]u u S Di D k k kr A 0 0 0t 10l 9k9the single electron a s:D

9l t lk k t2 w YS D l 9 l 9ma 5O Ouc u [a (nlm m → l9m m ) 1 ? ? ? k k k2 m 0 mD i D l s l s1i 1i 1i 1i k k
i l 9

t
1 a (nlm m → l9m m )] Note that the w are already known from the first orderD l s l s l 9ni ni ni ni k

calculations i.e. they are solutions to the inhomogeneous
In the case of a complete shell there is only one product ¨Schrodinger equation (see Eq. (5)). This type of calculation
state: usually involve many intra- and inter-shell interactions.

The procedure results in consistent polarizabilities that
a 5O[a (nlm m → l9m m ) 1 ? ? ?D D l s l s1 1 1 1 often are in excellent agreement with experiment [6].l 9

1 a (nlm m → l9m m )]D l s l sn n n n 1.3. Outline of second order contributions
This is just a summation over all m and m , and the spinl si i

We will here carry out the first steps needed to performsummation can be replaced with a multiplication with 2
higher order calculations. Next order equation insince Eq. (6) is spin-independent. In the usual approxi-

¨Rayleigh–Schrodinger theory is:mation that only the term t51 contributes in Eq. (6) we
get: (H 2 E ) c 1 (H 2 E ) c 2 E c 5 0 (7)0 0 2 cf 1 1 2 0

2 2l9 1 l l9 1 l1
a 5 8 Oku uruw l[l9, l]S D OS DD 0 l 9 By using the expansion:0 0 0 2 m 0 mml 9

11
]The last summation equals , giving: ]3 c 5 c 1 c 1 c 5 u Y 1O u Y 1O u Y0 1 2 0 lm l 9 l 9m9 l 0 l 0m0F Gr l 9m9 l 0m0

28 l9 1 l1]a 5 Oku uruw l[l9, l]S DD 0 l 9 in Eq. (7) we end up with:3 0 0 0l 9

t tfor a complete shell. This is of course just the very well H 2 E u 1O O A r kl0m0uC ul9m9lu 2s d0 0 l 0 tp p l 9F
tpl 9m9known expression for the closed shell dipole polarizability

d(l9, l0) d(m9, m0) E u 2 d(l0, l) d(m0, m) E u 5 0 (8)originally derived by Sternheimer [2]. g1 l 9 2 0

*In this order, the induced density is essentially c c 10 21.2. The electron correlation contribution *c c . Following the same procedure beginning with Eq.0 2

(1) we end up with a similar expression to Eq. (4). Thus
Taking also the electron–electron interactions into ac- l0 ± l, so the last term in Eq. (8) disappear. This rather

count the polarizability may be written as a 5 a 1 a ,D 0 1 complex equation may then be investigated for each crystal
where a is the polarizability from the previous section0 field term separately.
and a includes the correlation contribution. It is often1

noted that the correlation contribution is quite significant. 1.4. Numerical calculations
An approximate way to account for higher order contribu-
tions (if a is reasonably small) is to use the geometric1 In order to calculate the dipole polarizabilities we need
series expansion which is often found to be satisfactory to solve the modified Sternheimer equation:
[3]:

2
≠ l9 l9 1 1s d t t21a1 ] ]]]2 1 1 2(V(r) 2 E ) w 5 r uF G2 2 0 l 9 0]a 5 a 1 2S DD 0 ≠r ra0

We will here apply the finite difference method with a grid
The correlation contributions (a ) to the dipole polar-1 defined according to r 5 0, r 5 h, . . . , r 5 ih, . . . ,r 50 1 i Nizability may either be derived using the diagrammatic t tR. The boundary conditions are w 5 0 and w 5 0.l 9,0 l 9,Napproach in many body perturbation theory [4] or by tApproximating the second derivative of w in the point rl 9 iclassical methods [5]. Their result may be simplified into:

with:
t t t2 ta 5 2O 2kdc dc u1/r uc c l 2 kdc dc u1/r uc c l1 i j 12 0i 0j i j 12 0j 0i w 2 2w 1 w≠ w (r ) l 9,i21 l 9,i l 9,i11l 9 iij ]]] ]]]]]]]52 2

≠r hi2 kdc c u1/r udc c li 0j 12 j 0i

the differential equation connecting nearby points can then
where the c values (k 5 i or j) are unperturbed relativis-0k be written:
tic Hartree–Fock functions and the perturbed functions

t t t
dc 5 2 (1 /A ) c are given by: w 1 U w 1 w 5 s rs dk 10 1k l 9,i21 ii l 9,i l 9,i11 i
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with applying the Richardson extrapolation technique. This
method turns out not only to be extremely stable but alsol9 l9 1 1s d2 ]]]U 5 2 2 2 h 1 2(V(r ) 2 E ) fast using the numerical library LAPACK (see http: /ii 2 i 0S Dr i /www.netlib.org / lapack/ ).

2 tand s r 5 2 h r u . Applying the boundary conditionss di i 0

and connecting all the grid points lead to N21 linear
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